Computational Method for Obtaining Filiform Lie Algebras of Arbitrary Dimension
نویسندگان
چکیده
This paper shows a new computational method to obtain filiform Lie algebras, which is based on the relation between some known invariants of these algebras and the maximal dimension of their abelian ideals. Using this relation, the law of each of these algebras can be completely determined and characterized by means of the triple consisting of its dimension and the invariants z1 and z2. As examples of application, we have included a table showing all valid triples determining filiform Lie algebras for dimension 13. Key–Words: Filiform Lie algebra, abelian ideal, invariant z1, invariant z2, algorithm, computational methods.
منابع مشابه
Naturally graded p-filiform Lie algebras in arbitrary finite dimension
The present paper offers the classification of naturally graded p filiform Lie algebras in arbitrary finite dimension n . For sufficiently high n , (n ≥ max{3p − 1, p + 8}), and for all admissible value of p the results are a generalization of Vergne’s in case of filiform Lie algebras [11]. Mathematics subject classification 2000: 22E60, 17B30, 17B70
متن کاملSymbolic and Iterative Computation of Quasi-Filiform Nilpotent Lie Algebras of Dimension Nine
This paper addresses the problem of computing the family of two-filiform Lie algebra laws of dimension nine using three Lie algebra properties converted into matrix form properties: Jacobi identity, nilpotence and quasi-filiform property. The interest in this family is broad, both within the academic community and the industrial engineering community, since nilpotent Lie algebras are applied in...
متن کاملSolvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملAffine Cohomology Classes for Filiform Lie Algebras
We classify the cohomology spaces H(g,K) for all filiform nilpotent Lie algebras of dimension n ≤ 11 over K and for certain classes of algebras of dimension n ≥ 12. The result is applied to the determination of affine cohomology classes [ω] ∈ H(g,K). We prove the general result that the existence of an affine cohomology class implies an affine structure of canonical type on g, hence a canonical...
متن کاملOn Derivations of Some Classes of Leibniz Algebras
In this paper, we describe the derivations of complex n-dimensional naturally graded filiform Leibniz algebras NGF1, NGF2, and NGF3. We show that the dimension of the derivation algebras of NGF1 and NGF2 equals n+1 and n+2, respectively, while the dimension of the derivation algebra of NGF3 is equal to 2n−1. The second part of the paper deals with the description of the derivations of complex n...
متن کامل